Logo Search packages:      
Sourcecode: zfs-fuse version File versions  Download package

zfs_fuid.c

/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/zfs_context.h>
#include <sys/sunddi.h>
#include <sys/dmu.h>
#include <sys/avl.h>
#include <sys/zap.h>
#include <sys/refcount.h>
#include <sys/nvpair.h>
#ifdef _KERNEL
#include <sys/kidmap.h>
#include <sys/sid.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>
#endif
#include <sys/zfs_fuid.h>

/*
 * FUID Domain table(s).
 *
 * The FUID table is stored as a packed nvlist of an array
 * of nvlists which contain an index, domain string and offset
 *
 * During file system initialization the nvlist(s) are read and
 * two AVL trees are created.  One tree is keyed by the index number
 * and the other by the domain string.  Nodes are never removed from
 * trees, but new entries may be added.  If a new entry is added then
 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
 *
 */

#define     FUID_IDX    "fuid_idx"
#define     FUID_DOMAIN "fuid_domain"
#define     FUID_OFFSET "fuid_offset"
#define     FUID_NVP_ARRAY    "fuid_nvlist"

typedef struct fuid_domain {
      avl_node_t  f_domnode;
      avl_node_t  f_idxnode;
      ksiddomain_t      *f_ksid;
      uint64_t    f_idx;
} fuid_domain_t;

static char *nulldomain = "";

/*
 * Compare two indexes.
 */
static int
idx_compare(const void *arg1, const void *arg2)
{
      const fuid_domain_t *node1 = arg1;
      const fuid_domain_t *node2 = arg2;

      if (node1->f_idx < node2->f_idx)
            return (-1);
      else if (node1->f_idx > node2->f_idx)
            return (1);
      return (0);
}

/*
 * Compare two domain strings.
 */
static int
domain_compare(const void *arg1, const void *arg2)
{
      const fuid_domain_t *node1 = arg1;
      const fuid_domain_t *node2 = arg2;
      int val;

      val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
      if (val == 0)
            return (0);
      return (val > 0 ? 1 : -1);
}

void
zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
{
      avl_create(idx_tree, idx_compare,
          sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
      avl_create(domain_tree, domain_compare,
          sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
}

/*
 * load initial fuid domain and idx trees.  This function is used by
 * both the kernel and zdb.
 */
uint64_t
zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
    avl_tree_t *domain_tree)
{
      dmu_buf_t *db;
      uint64_t fuid_size;

      ASSERT(fuid_obj != 0);
      VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
          FTAG, &db));
      fuid_size = *(uint64_t *)db->db_data;
      dmu_buf_rele(db, FTAG);

      if (fuid_size)  {
            nvlist_t **fuidnvp;
            nvlist_t *nvp = NULL;
            uint_t count;
            char *packed;
            int i;

            packed = kmem_alloc(fuid_size, KM_SLEEP);
            VERIFY(dmu_read(os, fuid_obj, 0,
                fuid_size, packed, DMU_READ_PREFETCH) == 0);
            VERIFY(nvlist_unpack(packed, fuid_size,
                &nvp, 0) == 0);
            VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
                &fuidnvp, &count) == 0);

            for (i = 0; i != count; i++) {
                  fuid_domain_t *domnode;
                  char *domain;
                  uint64_t idx;

                  VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
                      &domain) == 0);
                  VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
                      &idx) == 0);

                  domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);

                  domnode->f_idx = idx;
                  domnode->f_ksid = ksid_lookupdomain(domain);
                  avl_add(idx_tree, domnode);
                  avl_add(domain_tree, domnode);
            }
            nvlist_free(nvp);
            kmem_free(packed, fuid_size);
      }
      return (fuid_size);
}

void
zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
{
      fuid_domain_t *domnode;
      void *cookie;

      cookie = NULL;
      while (domnode = avl_destroy_nodes(domain_tree, &cookie))
            ksiddomain_rele(domnode->f_ksid);

      avl_destroy(domain_tree);
      cookie = NULL;
      while (domnode = avl_destroy_nodes(idx_tree, &cookie))
            kmem_free(domnode, sizeof (fuid_domain_t));
      avl_destroy(idx_tree);
}

char *
zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
{
      fuid_domain_t searchnode, *findnode;
      avl_index_t loc;

      searchnode.f_idx = idx;

      findnode = avl_find(idx_tree, &searchnode, &loc);

      return (findnode ? findnode->f_ksid->kd_name : nulldomain);
}

#ifdef _KERNEL
/*
 * Load the fuid table(s) into memory.
 */
static void
zfs_fuid_init(zfsvfs_t *zfsvfs)
{
      rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);

      if (zfsvfs->z_fuid_loaded) {
            rw_exit(&zfsvfs->z_fuid_lock);
            return;
      }

      zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);

      (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
          ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
      if (zfsvfs->z_fuid_obj != 0) {
            zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
                zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
                &zfsvfs->z_fuid_domain);
      }

      zfsvfs->z_fuid_loaded = B_TRUE;
      rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * sync out AVL trees to persistent storage.
 */
void
zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
{
      nvlist_t *nvp;
      nvlist_t **fuids;
      size_t nvsize = 0;
      char *packed;
      dmu_buf_t *db;
      fuid_domain_t *domnode;
      int numnodes;
      int i;

      if (!zfsvfs->z_fuid_dirty) {
            return;
      }

      rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);

      /*
       * First see if table needs to be created?
       */
      if (zfsvfs->z_fuid_obj == 0) {
            zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
                DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
                sizeof (uint64_t), tx);
            VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
                ZFS_FUID_TABLES, sizeof (uint64_t), 1,
                &zfsvfs->z_fuid_obj, tx) == 0);
      }

      VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);

      numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
      fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
      for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
          domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
            VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
            VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
                domnode->f_idx) == 0);
            VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
            VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
                domnode->f_ksid->kd_name) == 0);
      }
      VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
          fuids, numnodes) == 0);
      for (i = 0; i != numnodes; i++)
            nvlist_free(fuids[i]);
      kmem_free(fuids, numnodes * sizeof (void *));
      VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
      packed = kmem_alloc(nvsize, KM_SLEEP);
      VERIFY(nvlist_pack(nvp, &packed, &nvsize,
          NV_ENCODE_XDR, KM_SLEEP) == 0);
      nvlist_free(nvp);
      zfsvfs->z_fuid_size = nvsize;
      dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
          zfsvfs->z_fuid_size, packed, tx);
      kmem_free(packed, zfsvfs->z_fuid_size);
      VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
          FTAG, &db));
      dmu_buf_will_dirty(db, tx);
      *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
      dmu_buf_rele(db, FTAG);

      zfsvfs->z_fuid_dirty = B_FALSE;
      rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * Query domain table for a given domain.
 *
 * If domain isn't found and addok is set, it is added to AVL trees and
 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
 * necessary for the caller or another thread to detect the dirty table
 * and sync out the changes.
 */
int
zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
    char **retdomain, boolean_t addok)
{
      fuid_domain_t searchnode, *findnode;
      avl_index_t loc;
      krw_t rw = RW_READER;

      /*
       * If the dummy "nobody" domain then return an index of 0
       * to cause the created FUID to be a standard POSIX id
       * for the user nobody.
       */
      if (domain[0] == '\0') {
            if (retdomain)
                  *retdomain = nulldomain;
            return (0);
      }

      searchnode.f_ksid = ksid_lookupdomain(domain);
      if (retdomain)
            *retdomain = searchnode.f_ksid->kd_name;
      if (!zfsvfs->z_fuid_loaded)
            zfs_fuid_init(zfsvfs);

retry:
      rw_enter(&zfsvfs->z_fuid_lock, rw);
      findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);

      if (findnode) {
            rw_exit(&zfsvfs->z_fuid_lock);
            ksiddomain_rele(searchnode.f_ksid);
            return (findnode->f_idx);
      } else if (addok) {
            fuid_domain_t *domnode;
            uint64_t retidx;

            if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
                  rw_exit(&zfsvfs->z_fuid_lock);
                  rw = RW_WRITER;
                  goto retry;
            }

            domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
            domnode->f_ksid = searchnode.f_ksid;

            retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;

            avl_add(&zfsvfs->z_fuid_domain, domnode);
            avl_add(&zfsvfs->z_fuid_idx, domnode);
            zfsvfs->z_fuid_dirty = B_TRUE;
            rw_exit(&zfsvfs->z_fuid_lock);
            return (retidx);
      } else {
            return (-1);
      }
}

/*
 * Query domain table by index, returning domain string
 *
 * Returns a pointer from an avl node of the domain string.
 *
 */
const char *
zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
{
      char *domain;

      if (idx == 0 || !zfsvfs->z_use_fuids)
            return (NULL);

      if (!zfsvfs->z_fuid_loaded)
            zfs_fuid_init(zfsvfs);

      rw_enter(&zfsvfs->z_fuid_lock, RW_READER);

      if (zfsvfs->z_fuid_obj)
            domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
      else
            domain = nulldomain;
      rw_exit(&zfsvfs->z_fuid_lock);

      ASSERT(domain);
      return (domain);
}

void
zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
{
      *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
          cr, ZFS_OWNER);
      *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
          cr, ZFS_GROUP);
}

uid_t
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
    cred_t *cr, zfs_fuid_type_t type)
{
      uint32_t index = FUID_INDEX(fuid);
      const char *domain;
      uid_t id;

      if (index == 0)
            return (fuid);

      domain = zfs_fuid_find_by_idx(zfsvfs, index);
      ASSERT(domain != NULL);

      if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
            (void) kidmap_getuidbysid(crgetzone(cr), domain,
                FUID_RID(fuid), &id);
      } else {
            (void) kidmap_getgidbysid(crgetzone(cr), domain,
                FUID_RID(fuid), &id);
      }
      return (id);
}

/*
 * Add a FUID node to the list of fuid's being created for this
 * ACL
 *
 * If ACL has multiple domains, then keep only one copy of each unique
 * domain.
 */
static void
zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
{
      zfs_fuid_t *fuid;
      zfs_fuid_domain_t *fuid_domain;
      zfs_fuid_info_t *fuidp;
      uint64_t fuididx;
      boolean_t found = B_FALSE;

      if (*fuidpp == NULL)
            *fuidpp = zfs_fuid_info_alloc();

      fuidp = *fuidpp;
      /*
       * First find fuid domain index in linked list
       *
       * If one isn't found then create an entry.
       */

      for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
          fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
          fuid_domain), fuididx++) {
            if (idx == fuid_domain->z_domidx) {
                  found = B_TRUE;
                  break;
            }
      }

      if (!found) {
            fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
            fuid_domain->z_domain = domain;
            fuid_domain->z_domidx = idx;
            list_insert_tail(&fuidp->z_domains, fuid_domain);
            fuidp->z_domain_str_sz += strlen(domain) + 1;
            fuidp->z_domain_cnt++;
      }

      if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {

            /*
             * Now allocate fuid entry and add it on the end of the list
             */

            fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
            fuid->z_id = id;
            fuid->z_domidx = idx;
            fuid->z_logfuid = FUID_ENCODE(fuididx, rid);

            list_insert_tail(&fuidp->z_fuids, fuid);
            fuidp->z_fuid_cnt++;
      } else {
            if (type == ZFS_OWNER)
                  fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
            else
                  fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
      }
}

/*
 * Create a file system FUID, based on information in the users cred
 */
uint64_t
zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
    cred_t *cr, zfs_fuid_info_t **fuidp)
{
      uint64_t    idx;
      ksid_t            *ksid;
      uint32_t    rid;
      char        *kdomain;
      const char  *domain;
      uid_t       id;

      VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);

      ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
      if (ksid) {
            id = ksid_getid(ksid);
      } else {
            if (type == ZFS_OWNER)
                  id = crgetuid(cr);
            else
                  id = crgetgid(cr);
      }

      if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id)))
            return ((uint64_t)id);

      rid = ksid_getrid(ksid);
      domain = ksid_getdomain(ksid);

      idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);

      zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);

      return (FUID_ENCODE(idx, rid));
}

/*
 * Create a file system FUID for an ACL ace
 * or a chown/chgrp of the file.
 * This is similar to zfs_fuid_create_cred, except that
 * we can't find the domain + rid information in the
 * cred.  Instead we have to query Winchester for the
 * domain and rid.
 *
 * During replay operations the domain+rid information is
 * found in the zfs_fuid_info_t that the replay code has
 * attached to the zfsvfs of the file system.
 */
uint64_t
zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
{
      const char *domain;
      char *kdomain;
      uint32_t fuid_idx = FUID_INDEX(id);
      uint32_t rid;
      idmap_stat status;
      uint64_t idx;
      zfs_fuid_t *zfuid = NULL;
      zfs_fuid_info_t *fuidp;

      /*
       * If POSIX ID, or entry is already a FUID then
       * just return the id
       *
       * We may also be handed an already FUID'ized id via
       * chmod.
       */

      if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
            return (id);

      if (zfsvfs->z_replay) {
            fuidp = zfsvfs->z_fuid_replay;

            /*
             * If we are passed an ephemeral id, but no
             * fuid_info was logged then return NOBODY.
             * This is most likely a result of idmap service
             * not being available.
             */
            if (fuidp == NULL)
                  return (UID_NOBODY);

            switch (type) {
            case ZFS_ACE_USER:
            case ZFS_ACE_GROUP:
                  zfuid = list_head(&fuidp->z_fuids);
                  rid = FUID_RID(zfuid->z_logfuid);
                  idx = FUID_INDEX(zfuid->z_logfuid);
                  break;
            case ZFS_OWNER:
                  rid = FUID_RID(fuidp->z_fuid_owner);
                  idx = FUID_INDEX(fuidp->z_fuid_owner);
                  break;
            case ZFS_GROUP:
                  rid = FUID_RID(fuidp->z_fuid_group);
                  idx = FUID_INDEX(fuidp->z_fuid_group);
                  break;
            };
            domain = fuidp->z_domain_table[idx -1];
      } else {
            /* kidmap_getsidby* functions link to abort, which
             * is an extremely bad idea for a daemon which is supposed
             * to never die. So we'll just avoid these calls for now */
            status = EINVAL;
            /*
            if (type == ZFS_OWNER || type == ZFS_ACE_USER)
                  status = kidmap_getsidbyuid(crgetzone(cr), id,
                      &domain, &rid);
            else
                  status = kidmap_getsidbygid(crgetzone(cr), id,
                      &domain, &rid);
                        */

            if (status != 0) {
                  /*
                   * When returning nobody we will need to
                   * make a dummy fuid table entry for logging
                   * purposes.
                   */
                  rid = UID_NOBODY;
                  domain = nulldomain;
            }
      }

      idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);

      if (!zfsvfs->z_replay)
            zfs_fuid_node_add(fuidpp, kdomain,
                rid, idx, id, type);
      else if (zfuid != NULL) {
            list_remove(&fuidp->z_fuids, zfuid);
            kmem_free(zfuid, sizeof (zfs_fuid_t));
      }
      return (FUID_ENCODE(idx, rid));
}

void
zfs_fuid_destroy(zfsvfs_t *zfsvfs)
{
      rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
      if (!zfsvfs->z_fuid_loaded) {
            rw_exit(&zfsvfs->z_fuid_lock);
            return;
      }
      zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
      rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * Allocate zfs_fuid_info for tracking FUIDs created during
 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
 */
zfs_fuid_info_t *
zfs_fuid_info_alloc(void)
{
      zfs_fuid_info_t *fuidp;

      fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
      list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
          offsetof(zfs_fuid_domain_t, z_next));
      list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
          offsetof(zfs_fuid_t, z_next));
      return (fuidp);
}

/*
 * Release all memory associated with zfs_fuid_info_t
 */
void
zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
{
      zfs_fuid_t *zfuid;
      zfs_fuid_domain_t *zdomain;

      while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
            list_remove(&fuidp->z_fuids, zfuid);
            kmem_free(zfuid, sizeof (zfs_fuid_t));
      }

      if (fuidp->z_domain_table != NULL)
            kmem_free(fuidp->z_domain_table,
                (sizeof (char **)) * fuidp->z_domain_cnt);

      while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
            list_remove(&fuidp->z_domains, zdomain);
            kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
      }

      kmem_free(fuidp, sizeof (zfs_fuid_info_t));
}

/*
 * Check to see if id is a groupmember.  If cred
 * has ksid info then sidlist is checked first
 * and if still not found then POSIX groups are checked
 *
 * Will use a straight FUID compare when possible.
 */
boolean_t
zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
{
      if (cr->cr_uid == 0 || cr->cr_gid == 0) return 1;
      ksid_t            *ksid = crgetsid(cr, KSID_GROUP);
      ksidlist_t  *ksidlist = crgetsidlist(cr);
      uid_t       gid;

      if (ksid && ksidlist) {
            int         i;
            ksid_t            *ksid_groups;
            uint32_t    idx = FUID_INDEX(id);
            uint32_t    rid = FUID_RID(id);

            ksid_groups = ksidlist->ksl_sids;

            for (i = 0; i != ksidlist->ksl_nsid; i++) {
                  if (idx == 0) {
                        if (id != IDMAP_WK_CREATOR_GROUP_GID &&
                            id == ksid_groups[i].ks_id) {
                              return (B_TRUE);
                        }
                  } else {
                        const char *domain;

                        domain = zfs_fuid_find_by_idx(zfsvfs, idx);
                        ASSERT(domain != NULL);

                        if (strcmp(domain,
                            IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
                              return (B_FALSE);

                        if ((strcmp(domain,
                            ksid_groups[i].ks_domain->kd_name) == 0) &&
                            rid == ksid_groups[i].ks_rid)
                              return (B_TRUE);
                  }
            }
      }

      /*
       * Not found in ksidlist, check posix groups
       */
      gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
      return (groupmember(gid, cr));
}

void
zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
{
      if (zfsvfs->z_fuid_obj == 0) {
            dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
            dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
                FUID_SIZE_ESTIMATE(zfsvfs));
            dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
      } else {
            dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
            dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
                FUID_SIZE_ESTIMATE(zfsvfs));
      }
}
#endif

Generated by  Doxygen 1.6.0   Back to index